
A Comparative Evaluation of Annotation Software for Grading
Programming Assignments

Beryl Plimmer
Department of Computer Science

University of Auckland
Private Bag 92019, Auckland 1142, New Zealand

beryl@cs.auckland.ac.nz

Abstract
Commenting on a student’s computer program with red
pen ink annotations is not possible with current software
and paper program ‘listings’ are a relic of a bygone era.
Yet ink annotations are the easiest way to provide rich
feedback to the student. We have developed and
evaluated Penmarked as a software solution to this
problem. It supports free-form ink annotations and,
importantly, associated marking tasks of gathering and
returning assignments and recording grades. The
evaluation against paper and digital marking systems
showed it to be faster and more effective. From a wider
perspective Penmarked demonstrates the intricacies of
providing totally paperless environment.
Keywords: Digital Ink Annotation, task support,
assignment grading.

1 Introduction
Annotating student assignments with a red pen is a basic
recording mechanism for teachers. The annotations
provide commentary to the student on the marker’s
response to the work and also provide ‘backtalk’
(Goldschmidt 1999) to the marker to assist with grading
decisions. Annotating paper scripts is simple, however
we are increasingly moving to digital environments
where there is no paper copy of the work. In these
environments students submit their work into a digital
drop-box, the marker reads and marks it from this
repository and returns feedback and grades to the student
electronically. Digital alternatives to paper annotation
include a marking schedule which incorporates space for
off-document comments or digital annotation tools to
provide in-situ comments. Either of these alternatives
presents problems to the marker and student. Off-
document comments are slow to construct and
understand, and usually restricted to text. Digital
annotation is available in some software applications
(such as adobe acrobat) but interfacing these general
tools effectively to student management systems and
incorporating grade recording is difficult. Furthermore
computer program code presents extra challenges
because of its non-linear structure and multi-file nature.

Copyright (c)2010, Australian Computer Society, Inc. This

paper appeared at the 11th Australasian User Interface
Conference (AUIC 2010), Brisbane, Australia, January 2010.
Conferences in Research and Practice in Information
Technology, Vol. 106. P. Calder, C. Lutteroth, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

There is a conflict here, ink annotations are the
traditional and, we believe, easiest way to provide rich
feedback to students. However electronic submission
systems make ink annotation of paper copies difficult to
support. There are many, most locally developed,
systems to support off document comments as a part of
assignment marking (our department has at least 3). But
writing off document comments is tedious and therefore
often neglected. As a consequence of these difficulties
students are missing out on personalized, meaningful
feedback on a critical part of their learning experience.

Computer programs pose some unique requirements
for annotation and marking support. First, the non-lineal
nature of programs means it makes no sense to read from
the beginning to the end of a program (as one does an
essay). Second, as a part of the evaluation process most
markers (teachers or teaching assistants) compile and
execute the program: to do this they must work with a
digital copy of the assignment. Hence electronic
submission of programming assignments has become the
norm. Digital drop-boxes have the added advantages of
supporting diverse teaching modalities; in-class, distance
education, e-learning etc.

Usable and affordable pen input devices, in particular
tablet PCs, mean that we now have the hardware to
support input of ink annotations directly onto the
document surface. Here we present Penmarked, a
software solution to this problem, and its comprehensive
evaluation from the teachers, markers and students
perspectives.

2 Motivation
Consider a TA 50 marking programming assignments.
They need to check each program against the assignment
requirements, provide feedback to the student, record the
grade in the administration system and send the
comments and grade to the student. The most difficult
part of this task with current systems is providing
feedback to the student, so it is often ignored or poorly
done. Yet personalized feedback is highly valued by
students.

The design focus of Penmarked is to provide and
efficient and effective environment for annotating and
marking of computer programming assignments. In this
paper we start with the educational case for good student
feedback mechanisms before reviewing existing work on
ink annotation and assignment annotation tools. This is
followed by a description of the design and
implementation of Penmarked. Then the evaluation
methodology and results are described. In the discussion

CRPIT Volume 106 - User Interfaces 2010

14

section we reflect on the efficacy of our approach and
lessons learnt including the requirements for program
marking compared with the more general needs of
paperless environments. The conclusions summarize our
project and suggest directions for future work.

For clarity we include a short glossary here:
assessment; we use to mean a class set of student
assignments; assignment, is an individual student’s
work; marking schedule is a table of marking criteria and
the mark allocated to each criterion, others may refer to
this as a marking scheme or rubric (see Figure 2 for
example).

3 Related Work
Many organizations are currently attempting to reduce or
eliminate paper (Sellen and Harper 2002). Computer
programs are, perhaps, the best example of a document
type that has evolved to be best suited to digital
environments. The folders of paper copies of program
listings that existed in all programming shops have been
replaced by on-line libraries as paper copies of large
object oriented programs with their multiple classes and
files make no sense. Programming integrated
development environments (IDEs) and supporting tools
are designed specifically to support program document
management and other programming tasks. However
they do not support assignment marking.

Educationalists agree that active learning, where the
student is required to do something, is more effective
that passive learning, where the student simply observes.
In programming classes students are routinely set
formative and summative programming tasks to actively
engage them in learning correct programming
techniques. To complete the feedback loop the work is
reviewed and, if it is a summative assignment, a grade
allocated. The reviewer’s comments and grade assist the
students to reflect on what they have done right and
wrong and thus gain a better understanding of the
subject. Thus the teacher and students together complete
the learning cycle (Figure 1)

Figure 1 Kolb's Learning Cycle (from Greenaway

2003)

The marker’s red ink annotations have traditionally
decorated students’ paper assignments. Ink annotations
are rich and expressive due to their free-format,
(Marshall 1997; Marshall, Price et al. 2001). Ink
annotations also have a part to play in supporting active
reading (Schilit, Golovchinsky et al. 1998). One of the
purposes of making annotations is to help the reader
engage more deeply in the material. These annotations
also direct subsequent readers to points of interest
(Shipman, Price et al. 2003). There is a well understood,
yet informal, code for shared annotations such as ticks,

crosses and enclosing loops with or without comments
or marks attached and ideograms such as ☺. Studies
comparing comprehension of annotated and un-
annotated documents suggest that annotation is an
effective aid to learning (Shipman, Price et al. 2003).
From these studies we can conclude that annotation is
useful for the marker to support his/her active reading of
the document, and to the student to direct him/her to
parts of the assignment that the marker thought were
noteworthy.

One of the first tools developed to explore digital ink
annotation was Wang Freestyle (Francik 1995). It
provides the user with simple free-form ink annotation
over a static page. XLibris (Schilit, Golovchinsky et al.
1998) was developed to offer users an active reading
experience, with a main goal of addressing the
tangibility challenges of reading online documents. It
provides users with an interface and features similar to
that of paper. While some word processors support ink
comments and change tracking these environments are
clumsy for multi-file programs. None of these general
tools are supportive of our marker with 50 programming
assignments to review and grade.

There are many automatic program marking
programs, these are good for marking algorithm type
problems where there is one correct answer. However
many programming assignments include elements of
user interface design and are designed to challenge the
student to choose between alternative ‘good solutions’,
making them unsuitable for automated marking.

We have identified three related annotation or
marking tools. Marktool (Heinrich, Wang et al. 2003;
Heinrich and Lawn 2004) supports annotation of
assignments by use of drag-and-drop shapes and text
boxes. Gild (Myers, Hargreaves et al. 2004) provides
marking functionality within the Eclipse IDE but does
not support digital ink or text annotation. Alongside this
project we have explored annotation inside IDEs (Priest
and Plimmer 2006; Chen and Plimmer 2007; Chang,
Chen et al. 2008), we were unable to build a functioning
clear annotation layer in either visual studio or Eclipse.
Our current solution is to copy the document to be
annotated and placed it as a background to the
annotation pane; however this is not a very robust
solution.

Digital ink annotation is technically challenging. The
basic requirement is to collect ink input, then display and
hold it in the correct place on the related document while
the document is repositioned or resized. If the underlying
document is dynamic then support for reflowing and
reshaping of digital ink as the underlying layout changes
is required. Margin bars, circles and underlines, must
stretch or shrink with layout changes through font
resizing, zooming or varying device characteristics
(Golovchinsky and Denoue 2002). Annotations should
also reshape when underlying text splits over line breaks
and page breaks (Ramachandran and Kashi 2003). In this
application the students’ documents are assumed to be
finished therefore ink reflow is not required. However,
even without reflow support, digital ink annotation
continues to be technically challenging because the ink
must exist in a separate layer to the original document

Proc. 11th Australasian User Interface Conference (AUIC2010), Brisbane, Australia

15

and standard interface components do not support this
notion.

4 Penmarked Software
The goal of Penmarked is to fully support the marking
and annotating of students’ assignments. It is written in
C# for the Microsoft Tablet OS and relies on the inbuilt
recognition engine for writing recognition. Here we
describe its pertinent features, more technical
descriptions are available elsewhere (Plimmer and
Mason 2004; Mason and Plimmer 2005; Plimmer and
Mason 2006). The software described here is the third
prototype of Penmarked. The first (Plimmer and Mason
2004) solved the technical ink annotation challenges and
supported basic collection and return of work. As a
result of our usability testing (Mason and Plimmer 2005)
a number of small, but important, interaction changes
were made to the system. Feedback from users has
resulted in additional functionality, such as the comment
pane. The version reported in (Plimmer and Mason
2006) was used for the evaluation study reported here.

We use a scenario of a teacher with a class set of 50
programming assignments to mark to describe
Penmarked. Before starting the teacher creates a new
master marking schedule for the assessment. A wizard
(Figure 2) is available from the edit menu to support its
construction or alternatively the xml file can be edited
directly. Another setup step is to decide which files are
to be displayed in the annotation panel. Full flexibility
based on file names and extensions with wild cards to
include or exclude is in the options menu. This is
particularly useful for some programming environments
that include a number of management files that are not
of interest to the teacher

Figure 2 Marking Schedule Construction Wizard.

The final pre-marking step is to load the students’
files. From the file menu the user can set up or edit an
assessment (a class set of marking). The assessment data
includes identification and date information, the marking
schedule and folder locations of the student assignments.

The student assignments can then be opened for
marking. Penmarked parses the location for the student
files specified above looking for student data files. These
files must contain the student identifiers and the names

and types of the associated student’s assignment files.
Such files are common in drop boxes or student
management systems but each has its own format.
Currently we support two formats a simple text file and
xml file; however Penmarked provides add-in
functionality to extend the file types and structures for
these files. All the student assignments found in the
specified directory structures are listed in the left pane
shown in Figure 3. The teacher can then commence
marking by taping on a student identifier in the list pane
on the left of Figure 3.

 On the first opening of a student’s assignment
Penmarked checks for submitted zip files. If one is found
a subdirectory named with the students identifier is
created below the location of the zip file and the contents
of the zip file are placed into this subdirectory. An
individual copy of the marking schedule is also created
for the newly opened student assignment and displayed
in the bottom window pane as shown in Figure 3. On
subsequent opening the unzipping is not required and the
student’s personal marking schedule is displayed
including any marks already entered.

The annotation pane displays all the files that meet
the filter specification, each in a separate tab. The
marker can now peruse the assignment. In the annotation
pane the marker can ink and erase freely over the
assignment. The ink is placed on a transparent layer that
lies above a rich textbox, thus the text is inaccessible to
the marker. Making the text inaccessible was a design
decision we made after talking with students and
teachers, it protects the student’s work from
unintentional changes by the marker. The
implementation challenges with this were many and
varied, most difficult was scrolling both layers
synchronously as it is difficult to access the appropriate
scrolling methods on the lower layer (this is now simpler
with Microsoft Presentation Foundation).

If the marker wants to run the program they can
directly access the folder containing the student’s files
by clicking on the folder icon on the tool bar.

As marking progresses the teacher can enter marks
against an item in the schedule by first selecting the item
row with a tap or click and then either write the mark
into the box in the right bottom corner of Figure 3 or
enter the mark via a keyboard. If ink is entered in the
writing box it is recognized as soon as another item in
the schedule is selected or after a short time delay. The
OS recognition engine using the number factoid
restriction (which limits recognition results to digits and
numeric symbols) is used for recognition. The data is
validated against the minimum and maximum values.
Valid data is saved into the schedule; the box flashes red
if recognition fails to produce a valid result. In our
various trials two users experienced problems with
recognition errors: one who was more accustomed to
writing Chinese formed his ‘5’ more like an ‘s’, a little
training solved this problem; the other placed decimal
points quite high between numerals ‘5.6’ this is
interpreted as a subtract symbol.

If the teacher wants to add some general comments a
small comments pane can be opened on the right-hand
side of the main window. In addition to the three main

CRPIT Volume 106 - User Interfaces 2010

16

panes the icons initiate frequently used functions of
open, save, export, ink and erase.

When marking of a student’s assignment is completed
the associated student item can be ticked in the list. A
right click on a student item in the list pane displays a
menu of less frequent tasks. There is access to

functionality such as adding a file to the student’s
assignment or cleaning all the annotations from the
assignment. There are also options to mark the item as
‘in progress’ or ‘recheck’, these options change the
colour of the list item to blue and red respectively.

Figure 4 Main Penmarked interface

Once all the students’ assignments have been marked

there is a number of post-marking task required to return
the assignments to the students and export the marks.
There is a batch process to returned annotated pdf copies
of the assignments to students. The marker simply
ensures all assignments to be returned are selected in the
list and selects ‘return pdfs’ from the file menu.
Penmarked generates a pdf for each student that contains
their marking schedule, general comments and annotated
assignment and emails it to the student. A pdf can be
generated independently of emailing. Similarly the
detailed and total marks can be exported to an xml file,
from which they can be imported into most standard
software applications and student management systems.

Thus the marking task it completed. We contend that
for efficiency marking software must support the entire
marking process: gathering up the assignments;

supporting examining, annotating and grading each
assignment; returning the work to students and filing the
grades. All in a time effective and easy-to-use manner.

The tasks supported by Penmarked for marking an
assessment are:

1. Set up a marking schedule
2. Set up an assessment task
3. Gather up assignments
4. Examination, annotation and grading of assignments
5. Return work to students
6. Export of grades

During development Penmarked has been usability

tested (Mason and Plimmer 2005) and trialled on a range
of assessments including .Net programs, Java programs
and essays. To evaluate the efficacy of Penmarked we

Proc. 11th Australasian User Interface Conference (AUIC2010), Brisbane, Australia

17

conducted a large evaluation study. The details of the
study and results are described below.

5 Method
Our goal with the evaluation study was to consider the
efficacy of Penmarked from the point-of-view of
teachers, markers and students. We conducted a
comparative study across three assessments of a second
year programming class, applying three different
marking treatments to each assessment in a Latin squares
arrangement. Quantitative data was gathered from
assignment marking while qualitative data was garnered
from students, markers and teachers.

The three marking treatments are: traditional paper
based marking, on-line marking where marks are
recorded in a database system, and Penmarked. We will
refer to these treatments as paper, database and
Penmarked. The class consisted of approximately 200
students so approximately 600 individual pieces of work
were marked. Six teaching assistants (TAs) marked one
sixth of the assignments for each assessment (~33). Each
student had one piece of work marked via each treatment
and each TA marked using each treatment. The
student/TA allocations were changed with each
assessment so that a TA only marked one piece of work
from each student. Therefore the study has marking
method as the independent variable and, it is a between-
subjects study and each TA and student marked, or had
marked, a different assessment for each treatment.

The hypotheses to be tested were
• that there would be a difference in time required

to mark using the different methods – with a
corresponding null hypothesis that there would
be no time difference.

• that the range of grades was consistent across
all treatments;

• that there would be a difference in the number
an of annotation or comments between the in
treatments

• that there would be a difference in marker and
student satisfaction between treatments.

The assessments varied in difficulty and length: the
number of program classes (which equates to files) and
lines of code in the model answers are, respectively 1/74,
3/198 and 5/435. As per our usual practice, for each
assignment the markers were provided with a model
answer, marking schedule and participated in two
discussions about the marking (one before any marking
and one after 3-4 assignments had been marked). Many
students take considerably more lines of code to write a
program than the model answers, sometimes twice as
much. The paper copies of the assessments 1-3 were
respectively approximately 2-3, 10-12, 15-25 pages. For
the paper treatment the markers used the paper copy
along with the digital copy of the assignment and the
IDE for marking. For the database treatment the markers
were interacting with the database forms, a digital copy
of the assignment and the IDE. For treatment three,
Penmarked, the markers use the digital copy of the
assignment with Penmarked and the IDE.

Different information was returned to students for
each treatment. For paper they received the annotated
paper copy of the assignment, and a paper, freehand
completed marking schedule. For the database treatment
they were emailed a simple list of the marking schedule
with their mark for each item and any text comments
alongside the item that the marker had entered into the
database. For the Penmarked treatment the student
received an email with an annotated pdf attached. The
first page of the pdf showed the completed marking
schedule followed by the digital ink annotated
assignment. In all cases the completed marking schedule
was returned and the students’ total mark was available
on the student management system.

We collected the following data for each assignment:
assessment number, treatment, marker, marking time,
number and types of annotations, grades, and the number
of marking appeals/complaints. After the three
assignments had been marked we surveyed marker’s
opinions, and student’s opinions.

The marking times were recorded by each marker as
they marked. TAs are paid by the hour for marking
based on an estimate of the time required for marking.
We agreed with the TAs on a fix, generous, number of
hours before the study commenced to negate time
pressures on them for the task. An adapted annotation
categorization system from (Marshall 1997) was used to
categorize annotations as either tick or cross, comment,
grade or other. Grades were taken from marked
assignments. The TAs’ and teachers’ opinions were
gathered through semi-structure interviews and student
opinions were garnered from an on-line survey. Student
complaints and appeals were recorded and matched back
to the assessment number, treatment and marker.

6 Results
Table 1 summarizes the results of the quantitative data
on marking times, grades and annotations. We ran a
series of statistical tests against this data to identify
significant variations. First we compared each set of
grades using a one-way ANOVA, these showed no
significant differences between markers or groups for
each assessment (p .298, p.327, p .265).

Analysis of the marking times showed significant
differences for all three assessments. Comparing
individual markers there was one marker who was
significantly slower through all three treatments.
However, disregarding this summary statistics showed
that paper marking was significantly slower than the
other treatments for the first assessment (<p .001). With
assessment 2 there was no significant time difference
between the paper and database marking but a
significant difference between these two and Penmarked
(p .002). With the third assessment Tukey HSD test
showed there are significant differences between each
treatment (p values between .03 and .004). Individual
differences between markers account for some of this
difference, however it is clear that Penmarked was
consistently faster for markers than either of the other
treatments.

Similar tests were conducted on the total number of
annotations and number of annotated assignments. The
differences were significant in all cases (p < .01) except

CRPIT Volume 106 - User Interfaces 2010

18

the first assessment where there was no significant
difference between the paper and Penmarked treatments.

Notably for the first assessment while 100% of the
assignments marked with the paper and Penmarked
treatments had annotations less than 20% of the database
treatment had any individual comments and indeed our
analysis of these showed most of the comments added to
the database were simply ‘not implemented’ for one
marker, or ‘not there’ for the other. Similar simple
comments were evident in the database for the second
and third assessments. Our suspicion is that these were
pasted in by the markers.

We had not anticipated looking at where the
annotations were on the documents however, with
assessment 3 when analysing the paper copies it became

obvious that all the annotations were on the front or back
page – absolutely none were placed in-situ. The
Penmarked annotations displayed some similarities with
some annotations placed at the top of a class rather that
close to the procedure they were related to. Comparing
the total number of annotations and assignments with
annotations across the assignment we note a general
decline in the annotations between the assessments. A
number of reasons could contribute to this, for example
the students are less likely to make syntactic or layout
mistakes. Or it could be as the programs get bigger it is
more difficult to identify the critical parts of the code for
the ink annotation, particularly with in the paper
treatment.

 Time Grades Annotations

Assessment Treatment
number of
assignment mean std mean std total

assignments with
annotations

1 Paper 60 20.9 10.6 78.3 16.2 275 60
 Database 58 10.3 3.2 82.2 16.6 77 11
 Penmarked 58 9.3 4.4 82.3 15.6 264 58

2 Paper 56 22.3 8.3 71.9 20.9 344 28
 Database 51 21.0 6.9 61.9 23.9 83 16
 Penmarked 56 16.1 4.3 64.4 23.2 490 24

3 Paper 53 21.4 3.8 79.5 20.1 33 5
 Database 58 26.7 12.6 78.1 23.3 91 17

 Penmarked 52 18.6 4.7 82.9 19.6 269 23

Table 1 Summary of quantitative marking data

We asked the TAs to rank the treatments on
preference, speed and accuracy. They all ranked
Penmarked first, database second and paper third.
Their comments supported this very strongly. They
appreciated the work-flow support Penmarked afforded
telling us that the start-up and close down time for each
assignment was considerably less with Penmarked.
They particularly commented on the one tap access to
the source files from the folder icon. They also
compared annotating in Penmarked favourably with
annotating the paper; the eraser in Penmarked was the
winner here! As they tended to mark at home or when
they had gaps between their own class commitments
they found carrying around a bundle of paper a
nuisance. Four of the markers had used the database
treatment when marking for the same course the
previous semester and two of these had used another
similar tool. Again they all expressed a preference for
Penmarked, commenting that it was more natural and

easier to comment directly on the assignments. Two
express concerns about their spelling and would have
like the ability to spell-check their handwritten
comments.

The teachers also made complementary comments
about Penmarked. While we had recorded grading
appeals, they often answered ad hoc questions about
marking. They found they were getting less questions
from the annotated assignments. Another benefit of
Penmarked, that we had not considered is that the
teacher had a complete digital replica of what was
returned to the student. They found this useful for
producing copies of marked work for course review or
external moderation. One also commented that she
had, on a couple of occasions had students change a
handwritten grade on their work and then claim it had
been added/recorded incorrectly. Having a digital
replica would stop this type of dishonestly.

Proc. 11th Australasian User Interface Conference (AUIC2010), Brisbane, Australia

19

Question Treatment Answers
I found the submission easy Agree Neutral Disagree
 Paper 6 14 17
 Database 30 8 1
 Penmarked 23 13 1
I found the return of work easy Agree Neutral Disagree
 Paper 12 9 16
 Database 28 11 0
 Penmarked 16 12 9
I understood where I had lost or gained
marks

 Mostly Some-times Rarely

 Paper 19 7 11
 Database 13 19 7
 Penmarked 18 15 4
The feedback helped my learning A lot A bit Not at all
 Paper 7 16 14
 Database 2 27 9
 Penmarked 10 21 6
From the feedback I know how to correct
my mistakes

 Completely A bit Not at all

 Paper 8 15 14
 Database 8 22 8
 Penmarked 7 21 9
I prefer to get my assignments marked this
way

 Completely A bit Not at all

 Database 16 17 5
 Paper 6 12 19
 Penmarked 17 13 9

Table 2 Student Survey

We also ran a voluntary on-line surveyed for the

students. Only 39 of the 200 students responded, not
enough from which to draw any firm conclusions. A
summary of the questions and responses is shown in
Table 2. The first part of the questionnaire was to find out
what they actually did with the assignments. The first two
questions on the convenience of the different methods we
added because of their grumblings about the paper
treatment. If this sample is representative of the class it is
clear from their responses that they disliked having to
hand-in and collect paper with over 30% of them not
collecting the marked assignment. This was consistent
with a large pile of uncollected paper copies at the end of
the course. They received the other marking feedback as
an email attachment. Notably almost all claim to have
read the comments on the paper or pdf, but only about
half read the database comments.

 As the purpose of feedback is to aid learning, if they
had not looked at the markers comments the feedback
would not have contributed to their learning. The next set
of questions was to elicit their opinion on the contribution
to learning. Because of the way the data was collected
we could not exclude answers from the respondents that
had not collected their paper from this set of answers.

They said they understood where they had lost and gained
marks better with feedback on the Penmarked treatment
and considered that it had helped their learning more.
However there was no difference between any treatments
on their ability to correct mistakes.

 Assessment
Treatment

1 2 3

Paper 2 3 3
Database 3 5 7
Penmarked 1 0 2

Table 3 Number of Complaints and Appeals

The final data we collected was the number of
complaints and appeals for remarking. The numbers are
small so no firm conclusions can be drawn from them.
However it does reinforce the data from the student
survey with them being more satisfied or better
understanding the marks allocated when the assignment
has been annotated.

The hypothesis that marking time would not increase
with Penmarked was proved, in fact Penmarked was

CRPIT Volume 106 - User Interfaces 2010

20

shown to be the fastest marking treatment. Grades
remained consistent across all treatments; we did not take
any extraordinary measure to ensure this consistency so
feel confident that this is a valid result. We found that
Penmarked did encourage markers to comment more on
the students work in all cases except when comparing
Penmarked to the paper copies of the first assignment.
The difference in this case is that the paper copies are
only 1-2 pages. The data from the markers, students and
teachers is qualitative and suggested increased
satisfaction from all parties. This is supported by the
decrease in complaints and appeals for the annotated
assignments.

7 Discussion
Our initial goal with this project was to create a software
environment for marking programs that would support
red ink annotation in a paper like manner. At the same
time we did not want to adversely affect the work
processes around marking. From a practical perspective
we did not want to increase the time required for marking
assignments. Nor could the software skew the grades in
any way. The primary goal was to increase feedback and
learning for the students, the aims were to increase their
learning by increasing understanding of how they had
gained or lost marks and how they could perform better,
while at the same time increase their satisfaction with the
grades they received.

Penmarked has been developed over three iterations.
The experience we have gained from repeated use of the
system ourselves and by other teachers and through the
more formal usability studies resulted in interesting
changes to the system. The area that has undergone the
most change is the student list. Initially it was a simple
list, we then added check boxes and later a right-click
menu and colour coding for incomplete assignments or
those to be revisited. We conclude from this that the
work-flow support that this list provides is essential to the
success of Penmarked.

In contrast the only alteration made to the annotation
pane is the addition of a ‘find’ function. Users have
suggested syntax highlighting and a clipboard for
comments. The suggestion for ‘find’ and syntax
highlighting lead to our investigations into implementing
similar functionality into an IDEs {Chang, 2008 #514}.
To date we have had limited success with IDEs: Visual
Studio 2010 may make this easier and is worthy of
investigation. The clipboard for comments is, at first
glance, an obvious extension. However there are
significant technical and user challenges to pasting ink, it
is not as easy to reflow into a space as text. Our suspicion
is that it would take longer to find and place the clipboard
comment than to rewrite it. We also worry that a
clipboard would encourage lazy generic comments
evident in the database treatment in the study above. As
educationalists we see little value in this type of
comment.

We undertook some informal usability tests on the
marking schedule when it was first developed to set
screen sizes and time delays. It has remained unchanged
since then. Clearly there are many other types of marking
scales used; A, B, C …; Likert scales, Excellent –
Unsatisfactory; and so on. Supporting other scales may

need some redesign of the interface but we would not
anticipate any great difficulties.

The responses from students and reduced complaints
suggest that annotating their work is worthwhile. We
would have like to have seen their confidence to correct
mistakes increase. This is an area that could do with
further investigation.

The negative comments from the TAs and students
about paper suggest to us that for this generation paper
and program code are incompatible. Both parties were
more comfortable with the electronic systems. It should
be noted that this is a programming course; hence we
would expect the students and TAs to be at ease with
computers. Using this system with a liberal arts class may
elicit a different response.

Reflecting on the project ourselves the most important
lessons we have learnt have been about the requirements
for supporting the entire activity. In our institute paper
copies of programming assignments have not been used
for many years. Yet we needed to go back to understand
the role of paper documents in marking assignments
(Marshall 2003) in order to provide the equivalent
functionality in a computer system. At the same time it
was essential that we provided an easy interface to the
existing institutional systems that support student
management.

Most of the functionality of Penmarked is available in
other software tools, annotation is available in
commercial packages such as Microsoft Word or Adobe
Acrobat, marking databases are easy to construct and
exist in many forms. The display of program code is
better in IDEs than that provided in Penmarked. The
essential benefit of Penmarked is the bringing together of
these different functions in a manner specifically
designed to support program marking.

8 Conclusions
Penmarked is a specific example of a wider problem:
How to translate successful paper-based techniques to a
paperless system without compromising best practice. We
have demonstrated that Penmarked is more time efficient
and produces better results than either a paper-based
system or a marking database. At the same time student
understanding and satisfaction increased. The success of
this project, we believe, is due in main to our rigorous
efforts to support the whole process of marking an
assessment from setting up the marking schedule and
collecting the assignments to the return of work and filing
of grades.

There are areas of Penmarked that could be improved;
in particular we would like to include syntax highlighting.
An alternative approach is to implement the same
functionality into a programming IDE. In an IDE
annotation could also be used for code review and for
programmers to keep notes for themselves and others.
Developing the annotation functionality inside and IDE
has proved to be technically difficult. We hope that as
pen-based computing becomes more common place that
more basic controls support annotation and transparent
overlays.

Many organizations are attempting to ‘go paperless’.
Our experiences with this project suggest that they will
have a higher success rate if careful consideration is

Proc. 11th Australasian User Interface Conference (AUIC2010), Brisbane, Australia

21

given to all tasks related to the activity to be supported.

9 References

Chang, S. H.-H., X. Chen, et al. (2008). Issues of
Extending the User Interface of Integrated
Development Environments. Chinz, Wellington,
ACM.

Chen, X. and B. Plimmer (2007). CodeAnnotator: Digital
Ink Annotation within Eclipse. OzCHI 2007:
Entertaining User Interfaces Adelaide, 211- 214,
ACM.

Francik, E. (1995). "Rapid, integrated design of a
multimedia communication system." Human
Computer Interface Design 36-69.

Goldschmidt, G. (1999). The backtalk of self-generated
sketches. Visual and spatial reasoning in design. J.
S. Gero and B. Tversky. Sydney, Key Centre,
University of Sydney: 163-184.

Golovchinsky, G. and L. Denoue (2002). Moving
markup: repositioning freeform annotations. UIST
'02, Paris, France, 21-30, ACM.

Greenaway, R. (2003, 24/6/2006). "Experiential Learning
Cycles." Retrieved 24/6/03, 2003, from
http://reviewing.co.uk/research/learning.cycles.htm.

Heinrich, E. and A. Lawn (2004). Onscreen marking
support for formative assessment. Ed-Media, 1985-
1992.

Heinrich, E., Wang, et al. (2003). Online Marking of
Essay-type Assignments. Ed-Media, Norfolk, USA,
768 - 772.

Marshall, C. (1997). Annotation: from paper books to the
digital library. DL, Philadelphia, 131-140, ACM.

Marshall, C. (2003). Reading and Interactivity in the
Digital Library: Creating an experience that

transcends paper. CLIR/Kanazawa Institute of
Technology Roundtable, Kanazawa, Japan, 5.4.1-
20.

Marshall, C. C., M. N. Price, et al. (2001). Designing e-
Books for legal research. JCDL '01, Roanoke,
Virginia, 41-48, ACM.

Mason, P. and B. Plimmer (2005). A Critical Comparison
of Usability Testing Methodologies. NACCQ,
Tauranga, 255-258, NACCQ.

Myers, D., E. Hargreaves, et al. (2004). Developing
Marking Support within Eclipse. OOPSLA, 62 - 66

Plimmer, B. and P. Mason (2004). Designing an
Environment for Annotating and Grading Student
Assignments. OZCHI, Wollongong, 45-53.

Plimmer, B. and P. Mason (2006). A Pen-based Paperless
Environment for Annotating and Marking Student
Assignments. AUIC, Hobart, 27-34, CRPIT.

Priest, R. and B. Plimmer (2006). RCA: Experiences with
an IDE Annotation Tool. CHINZ, Christchurch, 53-
61, ACM.

Ramachandran, S. and R. Kashi (2003). An architecture
for ink annotations on web documents. 17th
International Conference on Document Analysis and
Recognition, 256-260, IEEE Computer Society.

Schilit, B. N., G. Golovchinsky, et al. (1998). Beyond
Paper: Supporting active reading with free form
digital ink annotations. CHI 98, Los Angeles, CA,
249-256, ACM.

Sellen, A. J. and R. H. R. Harper (2002). The myth of the
paperless office. Cambridge MA, MIT.

Shipman, F., M. Price, et al. (2003). Identifying useful
passages in documents based on annotation patterns.
ECDL, Trondheim, Norway, 101-112.

CRPIT Volume 106 - User Interfaces 2010

22

